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A model for the evolution of phase boundaries reminiscent of the phase-field
model is considered. The equation related to conservation of thermal energy is
diffusive and coupled to an equation for the order parameter, which contains a
nonlinear convolution operator, related to the limit of an interacting particle
model with Kac-potential. Under diffusive rescaling the solutions converge to
solutions of the Stefan problem with kinetic undercooling and surface tension.
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1. INTRODUCTION

1.1. Structure of the Problem

We understand the equations considered in this paper as a (simplified)
model for a liquid undergoing solidification, which is closely related to a
stochastic process, see Section 1.2.

The substance undergoing solidification is described by two real
valued fields, u and m. The non-conserved field u(t, x) stands for the
deviation of the local temperature from the equilibrium temperature Teq at
which none of the phases is preferred, i.e., u=(T − Teq)/Teq, and
m(t, x) ¥ [−1, 1] is the order parameter which describes how close the
material is to its solid (−) or liquid (+) state. Here t is time and x is a point
in Rn. (We will assume periodic boundary conditions.) The local energy
density e(u, m) is such that its integral is conserved. We assume for



simplicity e=u+m. The energy e is the sum of the thermal energy (linear
in u) and the energy ‘‘stored’’ in the structure of the two phases, the latent
heat.

The evolution is governed by the nonlocal phase field equations with
periodic boundary conditions, where l is a small parameter:

l2
“tml(t, x)=−ml(t, x)+tanh(hA(t, x)), (1.1)

hA(t, x) :=b 5F
W

l−nJ 1x − y
l

2 ml(t, y) dy+lul(t, x)6 ,

“t(ul(t, x)+ml(t, x))=Dul(t, x). (1.2)

Here J \ 0 (ferromagnetic), >R
nJ(x) dx=1, J(x) depends only on |x| (iso-

tropic), and b > 1. A Lyapunov functional for the system is given by the
free energy

Fl(m, u) :=
1
4

FF l−nJ 1x − y
l

2 (m(x) − m(y))2 dx dy

+F
W

Wb(m(x)) dx+
l

2
F

W

u2(x) dx (1.3)

Wb(m) :=
1
b
51 − m

2
ln 11 − m

2
2+

1+m
2

ln 11+m
2

26−
1
2

m2 − cb, (1.4)

where the normalization cb is chosen such that minR Wb(m)=0. For b > 1
the function Wb is a double-well potential with two distinct minimizers
±mb, the two distinct nonzero solutions of mb=tanh(bmb). (For b [ 1 the
unique minimizer is 0.)

The parameter b stands in statistical physics for an inverse tempera-
ture, and in our model u is related to the temperature, so the question
arises how they are related. We skip the issue here and refer the reader to
Section 1.2, where modeling issues are addressed.

Note the competition of the double-well potential W, enforcing
m ’ ±mb, and the nonlocal J-dependent interaction term which penalizes
the transition from +mb to −mb. The C-convergence of related nonlocal
functionals was studied, e.g., in refs. 1 and 2.

Equations (1.1), (1.2), and their Lyapunov functional should be
compared with the (local) phase field equations

“tm=Dm −
1
l2 (WŒ(m)+lu) (1.5)

“t(u+m)=Du, (1.6)
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(W(m) is again a double-well potential) and the corresponding functional

F̃(m) :=F l |Nm|2 dx+
1
l

F W(m) dx.

The relation between the two systems can be understood informally by
noting that in Fourier space l−2(Jl f m5 −m)(t)=[cJ |t|2+O(l2 |t|4)] m̂(t).
(Jl( · )=l−nJ( ·

l))
When l Q 0 in (1.1) one can guess that m should quickly relax to be

close to one of the spatially constant equilibria ±mb of the uncoupled
system.

Moreover the motion of the transition layer from −mb to+mb should
be slow on the time scale where l=O(1). So we assume that its profile in
the fast direction, i.e., the direction normal to the interface separating the
+mb from the −mb region, looks at first order like a one dimensional
stationary solution of (1.1), connecting +mb and − mb. It is known (see
refs. 1, 2) that in 1-d there is a strictly increasing, antisymmetric function
m̄(r) ¥ C. connecting ± mb, called instanton. m̄(r) solves

0=−m̄(r)+tanh 1b F
R

J̄(r − rŒ) m̄(rŒ) drŒ 2 , lim
r Q ±.

m̄(r)= ± mb, (1.7)

J̄(r)=F J(|(r, y1,..., yn − 1)|) dy1 · · · dyn − 1. (1.8)

(This means J̄ is the effective kernel if the convolution operator is applied
to functions depending on one variable only.)

Let S(t) be the boundary of W−(t), which is the set where m(t) Q −mb

(solid). We assume that W− … W+, i.e., a solid droplet forming in a liquid.
We make the ansatz

ml(t, x)=m̄ 1d(x, S(t))
l

2+lm0
1 t, x,

d(x, S(t))
l

2+O(l2),

ul(t, x)=u(t, x)+O(l),

where d is the signed distance, negative in the solid.
The formal ansatz leads to the expectation that to highest order (S, u)

solve a free boundary problem sometimes referred to as Mullins–Sekerka
problem with kinetic undercooling, which we call here Stefan problem with
surface tension and kinetic undercooling :
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V(t, x)= − ho(t, x) − 2Nmb · u(t, x) on S(t), (1.9)

“tu=Du on int(W0S(t)) (1.10)

[Nu · n]S=2mbV on S(t), (1.11)

where [f] denotes the jump in normal direction (from solid to liquid) of f
across S, o is the mean curvature (positive for convex droplet) and V the
normal velocity of S . Observe that (1.10) and (1.11) contain the conserva-
tion of the total energy.

We remark that the coefficient h depends on certain ‘‘tangential
moments’’ of the kernel, and N is a normalization for the instanton in a
weighted L2-space. The appearance of h is a special feature of the nonlocal
evolution not shared by the local phase field equations (N=2h=mb=1).

It is the aim of this paper to make this ansatz rigorous under certain
conditions (developed interface) and as long as the free boundary problem
has a classical solution.

We would like to mention that we are aware of work by Carlen,
Carvalho, and Orlandi on a similar theorem for a nonlocal version of the
Cahn–Hilliard equation. (28)

The existence of classical solutions local in time for this free boundary
problem has been shown by X. Chen and F. Reitich, (13) if u has Dirichlet or
Neumann boundary conditions.

1.2. Modeling Issues: A Stochastic Perturbation of a Free Boundary

Problem

In refs. 18–20 a nonlocal evolution equation similar to (1.1) is derived
from an interacting particle model, where the parameter b stands for the
inverse temperature.

If we see the system (1.1)–(1.2) as a model for solidification and u as
the deviation from the temperature Teq at which both phases have equal
free energy, then what is b? Technically we could justify the assumption
that b is constant by starting with b(T) and then assuming that the devia-
tion from Teq is small, i.e., b % b(Teq).

Of course it is questionable whether a double-well potential with two
symmetric phases can describe solidification, a situation where the phases
have different degrees of order and a higher temperature favors the less
ordered phase. So we prefer to assume that b is just a parameter unrelated
to u and view the model simply as a perturbation of the free-boundary
value problem (1.9)–(1.11).

1088 Dirr



In fact our motivation to study the nonlocal phase field equations (1.1)
and (1.2) was the close relation between them and a system of equations
which is itself the limit of a stochastic process with Kac-potentials and
Glauber dynamics modeling phase change in the presence of a diffusing
external field. Thus this stochastic process can be interpreted as a small
stochastic perturbation of the free boundary problem, which could be used
to understand effects like nucleation and formation of ‘‘mushy regions.’’ In
order to present the reader with some motivation, we describe these ideas
more precisely.

The Stefan problem without surface tension, i.e., the system consisting
of (1.10) and (1.11) coupled with u=0 on S(t) admits weak solutions
which develop a so-called mushy region, i.e., a region where the system is
not clearly in one of the two phases, see e.g., ref. 30, IV.3. (The state of the
system can be interpreted as infinitesimally fine mixture of the two phases.)

If surface tension is considered, then the condition ‘‘u=0 on S(t)’’ is
replaced by an equation containing the mean curvature (first variation of
the surface energy), e.g., (1.9) or the Stefan-problem with Gibbs–Thomson
law, u=ho. Weak solutions for these models (see, e.g., refs. 26 and 29) do
not develop mushy regions, and therefore they do not converge always to
the weak solutions of the Stefan problem without surface tension as the
surface tension (i.e., the parameter h) vanishes. A possible explanation
might be that the mushy region is due to many nucleation events occurring
simultaneously at different sites, so a stochastic perturbation of a phase-
field approximation to the Stefan problem should be considered. This
could be done by adding noise to the local phase field system, i.e., keeping
energy conservation (1.6) and adding the noise term EdB(t, x) to the order
parameter equation, where B is white in time and (in higher space dimen-
sions) sufficiently regular in space. For this approach see refs. 5 and 6.

Here we model the phase change by spatially discrete random
variables (spins) s(t, x) ¥ {−1, +1}, where x is a site on a periodic integer
lattice. The spins flip at rates depending both on the average of their
neighbors via a Kac-potential and on u. We hope that our approach,
though a caricature, is more natural because the driving mechanism of
phase change phenomena is actually collective behavior of interacting
particles.

More precisely, the flip rate c (infinitesimal probability of sign change)
for the spin at site x is a function of

• average of neighbor spins (surface energy)

h(x, s) :=C
y

cnJ(c |x − y|) s(y)
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• (averaged) field lũ(cx), where ũ(x) :=(Kl
2
f u)(x), 0 < l ° 1,

K ¥ C.

0 , Kl
2
(z) :=l−2nK(l−2z)

c(x, s(t, x), s(t)) :=1
2{1 − tanh[bs(t, x)(h(x, s)+lũ(t, cx))]}.

The equation for the field u (defined on the torus) is given by the conser-
vation of total energy:

“tu=Du − “t(Kl
2
f s).

The small kernels (of width l2) had to be introduced for technical reasons,
to overcome the singularity of the heat kernel at t=0.

Now average the spins over a box containing (c−a)n sites (Coarse-
Graining):

mc(t, x, s) :=(ca)n C
|yi − xi| < 1

2 c
− a, 1 [ i [ n

s(t, y).

The dependence on s emphasizes that this is a random variable.
Due to the averaging over many lattice sites as c Q 0 in the definition

of h(x, s) and ũ, these coarse-grained spins converge by a sort of law of
large numbers:

The modified nonlocal phase field equations are obtained by replacing
m in (1.2) by Kl

2
f m, and u in (1.1) by ũ. Now introduce the scaling cx=xŒ

so the interaction range is O(1), whereas time is unscaled.
The random variables mc(t, cx, s) converge as c Q 0 in probability to

the solution of the modified nonlocal phase field equations: Let m(t, xŒ)
be the solution of these modified nonlocal phase field equations, and
m̃c(t, xŒ, s) the piecewise constant extension of the lattice random variable
mc(t, cx, s). Then for any d > 0

P(sup
t, xŒ

|m̃c(t, xŒ, s) − m(t, xŒ)| > d) Q 0 as c Q 0,

see ref. 15. The convergence holds for times of order l−2 and for xŒ on a
periodic domain of side length O(l−1), where l Q 0 but c ° l. So by
combining ref. 15 and the present paper one could go directly from the
stochastic process to a Stefan problem. (For further explanations of the
method see refs. 18 and 24.)

For a far more detailed analysis of the uncoupled system (i.e., u is
constant) see ref. 18.
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We remark that nonlocal models have been proposed and used for the
study of anisotropic phase change, using general kernels J(x − y) instead
J(|x − y|), see, e.g., refs. 4, 8, and 11.

C. K. Chen and P. C. Fife consider in ref. 11 a class of nonlocal phase
field equations and do a formal expansion to find the sharp interface limit
for kernels which are anisotropic and temperature dependent.

In these papers the part involving the convolution is linear in the order
parameter, i.e., equations of the form “tm=J f m − m − WŒ(m). The reason
for our choice (1.1) is that our equations come from a stochastic process
with flip intensities which have to be nonnegative and bounded. To our
knowledge there is no stochastic lattice model related to the order param-
eter equation with linear convolution and a double well potential.

1.3. The Method of the Proof

In the case where there is only the order parameter equation (1.1) with
a constant field u, the limit free boundary problem is motion by mean cur-
vature. The single nonlocal equation has a comparison principle, i.e., if for
two solutions m1, m2 initially m1(t) [ m2(t), then m1(t+s) [ m2(t+s) for
all s \ 0. This can be used to ‘‘squeeze’’ the actual solution between two
approximate solutions derived from the ansatz, see, e.g., in refs. 17 and 18
by A. De Masi, E. Orlandi, E. Presutti, and L. Triolo. Using the compari-
son principle and a generalized solution (viscosity solution for the level set
equation) for the free boundary problem, these results were extended by
M. A. Katsoulakis and P. E. Souganidis in refs. 24 and 25 to the anisotro-
pic case and past the appearance of singularities of the free boundary
problem. This approach was put in a general framework by G. Barles and
P. E. Souganidis. (9) For an approach using geometric measure theory for
the local phase field equations see ref. 29.

The system considered in this paper does not have a comparison prin-
ciple and the methods relying on it do not apply. Our approach follows
ideas by N. D. Alikakos, P. W. Bates, and X. Chen in ref. 3 (Cahn–Hilliard
equation) and by G. Caginalp and X. Chen (local phase field equations) in
ref. 10.

We briefly describe the method at an informal level:

Step 1. Show the existence of a function which solves the equation
up to a small right hand side (approximate solution) by matching formal
asymptotic expansions for the region around the free boundary and away
from the free boundary. The limit free boundary problem is determined by
solvability conditions for the asymptotic expansions.
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Step 2. Show linear stability for the linearization of the equations
around this approximate solution, i.e., the spectrum of the linearized
operator l−2Ll is bounded from one side uniformly in l, or Ql(Y) \

−l2C ||Y||2, where Ql(Y)=OLlY, YP.

Step 3. Control the error introduced by the nonlinear terms, get a
first estimate using a Gronwall argument and apply regularity theory to
improve it: Let Y be the difference between the true and the approximate
solution. Then we have for some suitable (weighted L2-) norm || · || and the
inner product O · , ·P

“t ||Y||2=−OY, l−2LlYP+Rl(Y) [ c ||Y||2+rl(||Y||) ||Y||2

by step 2 and step 3.

We give some brief remarks on the first two steps:

Approximate Solution. As in ref. 10, the inner expansion is con-
structed using multiscale asymptotic expansions: We treat the direction
orthogonal to the limit interface (fast variable) as additional independent
variable, which simplifies computations, but for consistency we have to
introduce additional unknown functions, comparable to the appearance of
Lagrange multipliers in calculus of variations.

Stability of the Linearization. The main difficulty for the linear sta-
bility in our case is to derive from the stability of the instanton in one
dimension, shown e.g., in ref. 19, the stability for the linearization around
the approximate solution in several dimensions: In principle, tangential
oscillations could grow. Here we cannot follow the methods used for the
Laplacian by X. Chen in ref. 12, as we cannot split the kernel into a con-
volution in tangential and in normal direction, whereas expressions like
|NY|2 split. However Chen gets much stronger results, which also apply to
the sharp interface limit of the Cahn–Hilliard equation.

Here we use the strict monotonicity (m̄Œ > 0), the decay properties of
m̄Œ(r) as r Q ±. and the symmetry of the instanton to construct a function
F, which solves up to an error of smaller order the equation for the eigen-
function for an eigenvalue of order l2, and which is strictly positive close to
the interface. Close to the interface we can consider YF−1 to show that the
infimum of Ql is of order l2. Away from the interface we use the fact that
the double-well potential W(m) is convex there and a very rough a-priori
estimate obtained by comparing a function with its ‘‘tangential average."
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1.4. Results

Let J(x)=J(|x|) be an isotropic, nonnegative (ferromagnetic) inter-
action kernel in C1(Rn) with support in {x: |x| [ 1}, b > 1, and
>R

n J(x) dx=1.
Assume that the free boundary problem (1.9)–(1.11) has a classical

solution on [0, Tmax) for regular initial data u(0, x)=g, W ±(0)=W±
0 and

periodic boundary conditions.
Further we assume that the free boundary S(t) is a smooth boundary

of a solid ‘‘droplet’’ in a liquid environment (solidification), i.e., W−(t) …

W+(t) … W and “W−(t)=S(t) for all t ¥ [0, Tmax). (In particular S does not
touch the periodic (fixed) boundary of the domain.)

We will show that the actual solutions of the nonlocal phase field
system stay close to the approximate solutions given by the following
theorem:

Theorem 1.1.

(1) For any integer k \ 1 there are functions ml
a, ul

a such that they
solve system (1.1)–(1.2) with periodic boundary conditions up to a right
hand side rl in (1.1) such that ||rl||. < lk, whereas (1.2) is solved exactly.

Moreover let S(t)=“W−(t) such that (S(t), u(t)) is a smooth solution
for the Stefan problem (1.9)–(1.11) with initial data as above. Then
ul

a(t)=u(t)+O(l) and ml
a(t)=±mb+O(l) in W±

0 (t), if |dist(x, S(t))| >
Cl |ln(l)| for some C > 0.

(2) Further for k > p(n), (n is the space dimension) we have for the
true solutions (ml

true, ul
true) of (1.1)–(1.2) starting from the same initial

values: ||ml
a − ml

true ||L.+||ul
a − ul

true ||L. Q 0 as l Q 0.

As the approximate solutions for the order parameter m are close to
± mb in W ±(t), we get immediately the following corollary:

Corollary 1.2 (Sharp Interface Limit for Developed Interfaces).

For any d > 0 the solutions of (1.1)–(1.2) with initial conditions as in
Theorem 1.1 (i.e., a developed interface) are such that ul(t) Q u(t) uni-
formly in the time interval [0, Tmax − d) and ml(t) Q ±mb in W ±(t) a.e. and
in L1.

1.5. Notation

n denotes the space dimension and l will be the small parameter.
|x| denotes the Euclidean norm in Rn.
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Convention on Constants. C, c, etc. denote (not necessarily the same)
constants which do not depend on l.

By a slight abuse of notation we write J(x)=J(`x2
1+ · · · +x2

n),
where the function J on the left hand side is a function on Rn and the J on
the right hand side is a function on R, denoted by J as well. J̄ is as in (1.8).

Jl(x − y)=l−nJ 1x − y
l

2 , J̄l(r − rŒ)=l−1J̄ 1 r − rŒ

l
2 .

N−1 :=F
R

(m̄Œ(r))2

1 − m̄(r)2 dr, (1.12)

h :=
N
2

FFF m̄Œ(z) J 1 ẑ2+ C
n

k=2
y2

k
2 m̄Œ(z+ẑ) 1 C

n

k=2
y2

k
2 dẑ dz D

n

k=2
dyk.

N is the normalization of m̄Œ with respect to a measure depending on m̄,
and h a tangential second moment of the kernel.

For x ¥ Rn let r(x) :=dist(x, S), where dist is the signed distance,
positive in W+.

We will sometimes use rl(x) to indicate that we mean the distance
from the zero level set of the approximate solution.

Denote by PrS : {x: |dist(x, S)| < d} Q S the projection to S. (It is
well defined for d small.)

Let for a multi-index a=(a1,..., an), |a|=;n
i=1 ai, ya=<n

i=1 yai
i , and

Daf(x) stands for the coefficient of ya in the Taylor expansion of f at x.
For a function f: Rn × R Q R let fŒ(x, r) := “

“r
f(x, r).

We will write ||f||2 for the L2-norm, and ||f||. for the L.-norm.
[f(l) | i] denotes the ith order term if the quantity in brackets is for-

mally expanded, i.e., f(l)=; i [f(l) | i] l i.

2. ASYMPTOTIC EXPANSION

In this section we will prove Theorem 1.1 (1) by the method of
matched asymptotic expansions. We construct different expansions away
from the free boundary and close to the free boundary, where the order
parameter changes quickly in the direction orthogonal to the free bound-
ary. The idea is to use Taylor expansion in the slow directions to end up
with a one-dimensional convolution equation in the fast direction.

2.1. Outer Expansion

We seek a solution of the system in a neighborhood of one of the
stable equilibria, either of +mb or of −mb. There the system is stable, small
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perturbations in any direction are damped, so a reasonable ansatz is
ml(t, x)=mb+O(l). We look for an expansion for the outer solution in a
formal power series in l, i.e.,

ml, ±(t, x)=±mb+ C
k

i=0
l i+1m±

i (t, x), ul, ±(t, x)= C
k

i=0
l iu±

i (t, x).

In order to determine the (mi, ui), we use the Taylor-expansion for m
and replace the convolution by multiplication of derivatives with moments
of the kernel, so at the end we get an algebraic equation.

Let (Ma(J)) :=>R
n (<n

l=1 xal
l ) J(x) dx be the a-moment of the kernel

J for the multi-index a. Then M(0, ...0)=1, Ma=0 for |a|=1, and formally

(Jl f f )(x)= C
.

i=0
C

|a|=i
Ma(J)(Dam)(x).

Thus the formal outer expansion equations read for Eqs. (1.1)–(1.2)

“tu
±
i − Du±

i =−“tm
±
i − 1 (2.1)

m±
i =

b(1 − m̄2
b)

1 − b(1 − m̄2
b)

u±
i +

1
1 − b(1 − m̄2

b)
( − “tm

±
i − 2+B i − 1),

B i − 1=B i − 1({Ma(J) Dam±
i − k}|a|=k, 2 [ k [ i, {u±

k }k [ i − 1). (2.2)

2.2. Inner Expansion

We seek a formal solution of the form

ml(t, x)=m̄ 1dl(t, x)
l

2+ C
.

i=0
l i+1mi

1x,
dl(t, x)

l
2 , (2.3)

ul(t, x)= C
.

i=0
l iui

1x,
dl(t, x)

l
2 (2.4)

dl(t, x)= C
.

i=0
l id i(t, x), (2.5)

|Ndl(t, x)|=1 (2.6)

where mi, ui ¥ C.(Rn × R) with all derivatives bounded and d i ¥ Ck(Rn),
d0=dist(x, S0(t)). (Signed distance.) Here S0 is the free boundary of the
limit Stefan problem. Of course later the expansion will be truncated at
some large integer K. For the necessity of corrections to the distance from
the limit free boundary, i.e., d0+ld1+ · · · , see also refs. 3, 9, 10, and 24.
(Instead of expanding the distance function one could as well seek a
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solution of the form m̄(hl+d0

l )+; i l imi(
d0

l ).) Note that (2.6) is equivalent to
the so-called distance equations :

|Nd0|2=1, Nd0 Nd i=−1
2 C

i − 1

j=1
Nd i − j Nd j, i \ 1. (2.7)

Matching Conditions. We need to impose matching conditions for
z Q ±. uniformly in (t, x). We require convergence of all derivatives with
an exponential rate, up to some order depending on the required quality of
the approximate solution, see refs. 3 and 10.

Further Remarks. We remark that an approach as in ref. 10 will lead
to the appearance of very high derivatives in the ‘‘lower order parts’’ of the
equation, because unlike a Laplace equation, which involves only second
derivatives, expanding the convolution operator around the one-dimen-
sional convolution involves in principle the whole Taylor expansion either
of the kernel or of the unknown functions. In both cases we need to restrict
the class of admissible kernels. Our choice is not optimal, but we do not
strive for generality here.

Denote by L (1)
m̄ =f the linearization of the one-dimensional integral

operator in (1.7) around the instanton (standing wave) m̄. L (1)
m̄ =f has a

solution if and only if f is orthogonal to m̄Œ in a weighted L2 norm.
(Fredholm alternative.) More precisely, the function space is L2 with
respect to the measure m(dx) :=N dx

b(1 − m̄2)
, where N is a normalization such

that ||m̄Œ||2
m(dx)=1. (See Notation and Appendix.) This fact concerning the

one-dimensional situation enters in the following way: We use Taylor
expansion in the tangential direction and reduce the equations to the form
L (1)

m̄ mj(t, x, z)=R j − 1(t, x, z), where the operator acts on functions of the
variable z ¥ R and R j − 1 depends on already computed quantities and on
d i, ui. We can find a solution if and only if R j − 1(t, x, z) is orthogonal to
m̄Œ(z) in L2(m(dx)). This leads to an evolution equation for d and thus to a
free boundary problem. (The boundary is “{d > 0}.) However the resulting
system for d, m and u will in general be overdetermined: d solves a linear
PDE with the constraint |Nd|=1. The reason for this is that we treat z and
x as independent variables, although they are related by lz − dl(x)=0. So
we follow ref. 10 and introduce new unknown functions gl(t, x), hl(t, x),
ll(t, x). They appear in the equations multiplied by the term by (lz − dl),
so they cannot affect the solution in the region we are interested in. The
resulting corrected system of equations has a unique solution.

The following lemma is about the expansion of a convolution in
directions tangential to the interface. Let z(x) :=l−1 dl(x) ¥ R. Let Œ denote
derivatives w.r.t z, whereas the operators Da and N (see 1.5) act only on
functions of the variable x.
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Lemma 2.1. For K ¥ N and a function fl(x, z)=;K
i=0 l ifi(x, z)

and dl as in (2.5) solving the distance equations (2.7), define

Jl(m, dl)(x) :=Jl f f(x, l−1 dl(x)).

Then we get the following formal asymptotic expansion:

Jl(f, dl)(x)=F J̄(r) f0(x, z(x)+r) dr+ C
K

i=1
l iJi(f, dl)(x)+O(lK+1),

Ji(f, dl)(x)=F J̄(r) fi(x, z(x)+r) dr

+
Dd i−1(x)

2
F

R
F

R
n−1

J(z2+|y|2) f −

0(x, z(x)+z) |y|2 Hn−1(dy) dz

+Nd i−1(x) ·Nd1(x) F J̄(r) f −

0(x, z(x)+r) r dr

+Ri−1
J (x, z(x)),

where R i − 1
J is obtained by convolutions of {Dadk(x)}k [ i − 2, |a|+k [ i+1 and

{“
l
zD

a
xfk}k [ i − 1, |a|+k+l [ i with expressions like Jp(r) :=> J(r, y) P(r, y) dy,

where P is a polynomial.
The idea of the proof is to insert the Taylor expansion of dl at x0 with

lz0=dl(x0) into the Taylor expansion of f around (x0, z0+Nd0(x0) · y)
=(x0, z0+r).

To get the inner expansion equations, we have to expand the nonli-
nearity (hyperbolic tangent) as well. Unlike in ref. 10, the nonlinearity
involves both phase and temperature.

On the left hand side of the order parameter equation (OPE), (1.1) we
have to expand “tml(x, l−1 dl(x, t)).

When taking into account that due to the time rescaling the right hand
side of (1.1) is multiplied by l−2, then we get the uncorrected inner expan-
sion equations for the order parameter:

B i
p+B i

O+B i − 1=L (1)
m̄ mi

L (1)
m̄ mi := − mi+(1 − m̄(z)2) F J̄(r) f mi(x, z+r) dr,

B i
p :=m̄Œ(z)(“td i(t, x) − h Dd i(t, x) − ui(t, x, z)),

ui(t, x) :=F Nm̄Œ(z) ui(t, x, z) dz (2.8)
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B i
O is the part of Ji(m, d) depending on ui, d i, but projected on the orthog-

onal complement of span(m̄Œ) with respect to the measure m(dz), B i
p is the

part parallel to m̄Œ. Note that the solvability condition for each level of the
asymptotic expansion requires that the right hand side is orthogonal to m̄Œ.

By symmetry arguments one can see that >R J̄(r) m̄Œ(z+r) r dr is
orthogonal to m̄Œ(z), that is why there is no Nd1 Nd i in B i

p. Moreover in the
equation for the first order correction to the instanton, m0, this term
disappears totally as Nd1 Nd0=0 by the distance equations. (See 2.1)

The transport coefficient h comes from a projection on m̄Œ, see (1.12).
B i − 1 depends only on already computed terms of the expansion.

Now we follow ref. 10 and add additional unknown functions to the
equations for u and m in such a way that the additional terms vanish on the
submanifold of interest, lz=dl(t, x). The strategy is to find first a solution
on {d0(t, x)=0}, and then to define the additional unknown functions at
the respective order by the requirement that the equation is solved for all
(t, x, z).

Add to the OPE (1.1) the term l−1gl(t, x) gŒ(z)(dl − lz), where gl(t, x)
is an additional unknown function and g a function connecting 0 and 1
monotonically s.t. gŒ serves as cut-off, see ref. 10.

We have to add an expression containing two additional unknowns,
hl(t, x) and ll(t, x), to the equation for u. One of them will be needed for
the matching, the other for the solvability (or secularity) condition.

In order to solve the inner expansion equations, we will need to extend
the outer solutions u±

i , m±
i on a small neighborhood of both sides of the free

boundary. (As the zero level set of dl is only l-close to the free boundary of
the Stefan problem.) We can do so such that the order parameter equation
is solved exactly, but the energy equation will not be solved exactly: In the
domain of extension, there will be a remainder R i

± , called discrepancy term.
If we add the same expression as in ref. 10, put u(t, x, l−1 dl(t, x)) in

Eq. (1.2) and use |Ndl|=1, then we derive in the same way as ref. 10 the
corrected inner expansion equations:

5ui(t, x, z) − C
i

j=0
g(z) d i − j(t, x) h j(t, x)6œ=A i − 1+A i − 2

1 +A i − 2
2 ,

A i − 1=“t d i − 1m̄Œ+(“td0 − Dd0) u −

i − 1+(li − 1d0+l0d i − 1) gŒ − hi − 1zgœ(z)

+(“t d i − 1 − Dd i − 1) u −

0 − (Nd0 Nu −

i − 1+Nd i − 1 Nu0Œ)

A i − 2
1 =[“t ul(t, x, z) − Dul(t, x, z)+“tml(t, x, z) | i − 2]

− [R i − 2
+ (t, x) g(C1+z)+R i − 2

− (t, x) g(−C1 − z)].

(2.9)

(Note that this is the outer equation in (t, x) at level i − 2.)
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A i − 2
2 contains terms at the level i − 2 or lower, i.e., already known

quantities, and all of them contain at least one derivative with respect to z,
so they vanish as |z| Q .. A i − 2

1 vanish as |z| Q . because of the outer
expansion equations.

As in ref. 10, we need in order to have a bounded solution at the next
level: >R (A i(t, x, z)+A i − 1

1 (t, x, z)+A i − 1
2 (t, x, z)) dz=0.

Let [u] :=u(t, x, +.) − u(t, x, −.), then we get the following condi-
tion for each (t, x) in a d-neighborhood of the free boundary:

0=2mb“td i+(“td0 − Du0)[ui]+(“td i − Dui)[u0]

− 2(Nd i[Nu0]+Nd0[Nui])+(d0li+l0d i)+hi. (2.10)

The corrected expansion equation for the order parameter has the
following form:

Replace in (2.8) the terms B i
p and B i

T by B̂ i
p and B̂ i

T :
B̂ i

p :=B i
p+N1(d ig0+g id0), B̂ i

T :=B i
T+(1 − m̄(z)2 − m̄Œ(z) N1)(d ig0+g id0),

N1=>R m̄Œ(z)(1 − m̄(z)2)−1 gŒ(z) dz. Then add to B i − 1 the terms depending
on {d jg i − 1 − j} i − 1

j=0. The resulting solvability condition (right hand side
orthogonal to m̄Œ) B i

p+Om̄Œ, B i − 1PL2(m(dz))=0 is similar as in ref. 10:

0=“td i(t, x) − hDd i(t, x) − ui(t, x)

+N1(d i(t, x) g0(t, x)+g i(t, x) d0(t, x))+bi − 1(t, x), (2.11)

bi − 1 depends only on known quantities.
From regularity for L (1)

m̄ (mi)=R i − 1 in weighted spaces (see Appendix)
we get exponential convergence of mi and its derivatives as r Q ±..

2.3. Existence of the Asymptotic Expansions

We remark that short-time existence and regularity for Eqs. (1.1) and
(1.2) is straightforward by a fixed-point argument: Rewrite both equations
as integral equations using the variation of constants formula.

The existence on [0, Tmax −d) will be a by-product of the convergence
proof: As long as the solution exists, it stays close to the constructed
approximate solution, thus we can iterate the short-time existence.

2.3.1. The First Order
We briefly sketch the strategy for solving the corrected expansion

equations, as it is exactly the same as in ref. 10. We start with the first
order equation, which is slightly different because it leads to the limit free
boundary problem.

We immediately get u0(t, x, z)=û(t, x)+h0(t, x) d0(t, x) g(z). First
consider (t, x) ¥ S0(t), i.e., d0(t, x)=0. Then (2.11) gives −2Nmb û(t, x)+
VS

0 − hoS
0=0, which is one of the equations fulfilled by the limit Stefan
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problem. So û and thus u0(t, x, z) is fixed on the free boundary by the
solution of the limit problem. By the matching conditions, this defines the
boundary values for the outer expansion, and thus u±

0 (t, x) is fixed. The
matching conditions for general (t, x) determine h0, because

u+
0 (t, x)=û(t, x)+h0(t, x) d0(t, x), u−

0 (t, x)=û(t, x),

so h0(t, x)=d0(t, x)−1 (u+
0 (t, x) − u−

0 (t, x)). Thus we get h0(t, x)=[Nu0] on
S0(t).

Now consider (2.10) for (t, x) ¥ S0(t). As [u0]=0, we are left with
2mbV|S0=[Nu0], which is the Stefan condition at the interface. Finally we
define l0 by requiring that (2.10) is solved also away from the interface.

2.3.2. The Higher Orders
As ref. 10, we end up with a linear system of PDEs:

2mb“td j=[Nuj]S+e j − 1
1 d j+e j − 1

2 on S0

“tu
±
j =Du±

j +e j − 1
3 in W ±

u±
j =“td j − hDd j+e j − 1

5 ± d j+e j − 1
1 on S0

Nd0 Nd j=e j − 1
4 in Ud(S)

with initial conditions and periodic boundary conditions. The e j − 1 depend
only on already computed quantities. Existence can be shown by Banach
fixed point arguments. (For details see refs. 10 and 13.)

2.4. Construction of the Approximate Solution

We have to use cut-off functions and the exponentially fast conver-
gence given by the matching conditions to construct out of the inner and
outer expansions an approximate solution to the equation.

Take the first K terms of the expansions for dl, ul, ml, ul, ±, and ml, ±,
set for the inner expansions z=ldK, and denote the resulting functions by
mK, etc.

Let uK
O :=1W

+(t)u+, K+1W
−(t)u−, K, and define mK

O in the same way. Take
a smooth cut-off function z ¥ C.

0 (−1, 1), z — 1 in [−1
2 , 1

2]. Now define

ua=uK
O in W0Ud(S)

ua=uK
I z1d0

d
2+11 − z 1d0

d
22 uK

O in Ud(S)0Ud

2
(S)

ua=uK
I in Ud

2
(S),

and define ma in the same way.
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The only region where problems could arise from is the coexistence
region of outer and inner expansion. Due to the exponential matching
conditions we get that if the asymptotic solutions solved the equations
formally up to order K, then ua, ma are solutions up to a right hand side of
order lK − 1 in L..

3. CONVERGENCE PROOF

We will show Theorem 1.1 (2) by performing step 2 and step 3 as
outlined in the introduction, Section 1.3.

3.1. The Linearization

In this subsection we will linearize the equation (1.1) around the
approximate solution. In the sequel we will denote by Y the variations of
the order parameter m and by v the variations of the temperature field u.

Consider the approximate solution constructed above up to and
including the first correction to the instanton, i.e., for K=2. As K will
remain fixed, we denote the approximate solution for K=2 by mA, uA.
Sl, the zero level set of dl(t, x), is a sufficiently regular compact hyper-
surface. Let

hA(t, x) :=b(Jl f mA+luA) and a(t, x) :=b(1 − tanh(hA(t, x))2). (3.1)

The linearized system is:

“tY=−l−2Y+l−2b(1 − tanh(hA(t, x))2 (Jl f Y+lv). (3.2)

“tv=Dv − “tY.

In order to symmetrize the nonlocal (convolution) part of the operator we
consider the evolution of Ya=Y(t, x) a(t, x)−1

2.
Clearly C−1 ||Y||L2(dx) [ ||Ya ||L2(dx)=||Y||L2(a − 1(x) dx) [ C ||Y||L2(dx) for some

C > 0. We are interested in “t ||Y||2
L2, because that is what we have to

control in order to make the method of the convergence proof work:
We have to show linear growth with coefficients uniform in l. Let Y

solve (3.2). 1
2 “t(Ya)2=(“tY) a−1Y − 1

2 (“ta) a−2Y2, so

l2

2
d
dt

||Y(t, x)||2
L2(a − 1(x) dx)= − Ql(Y)+lvk,

Ql(Y)=1
2 FF Jl(x − y)(Y(x) − Y(y))2 dx dy+F fl(t, x) Y(x)2 dx, (3.3)

fl(t, x)=
1

a(x)
− 1+l2 “ta

2a2 .
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fl depends on the approximate free boundary through dl(t, x) and the
approximate normal velocity “tdl(t, x), and it depends on the approximate
temperature uA and the order parameter mA. We write, omitting time
dependence, rl(x) :=dist(x, Sl(t))=dl

A(t, x) and find by straightforward
but tedious computations:

Lemma 3.1. There are 0 < c* [ Cg independent of l such that
fl(x) > c* on |dl(x)| > Cgl. Moreover there is a d > 0 independent of l

such that the following holds for |dl(x, t)| < d: There is (uniformly in t) a l0

and a C independent of l such that for any l < l0 :

fl(x)=f0
1 rl(x)

l
2+lf1

1x,
rl(x)

l
2+fl

R(x),

f0
1 rl(x)

l
2 :=1b 11 − m̄ 1 rl(x)

l
2222−1

− 1, (3.4)

f1
1x,

rl(x)
l

2 :=
2m̄ 1 rl(x)

l
2 5m0

1x,
r(x)

l
2+

“tdl(x)
2

m̄Œ 1 rl(x)
l

26

b 11 − m̄ 1 rl(x)
l

2222
, (3.5)

|fl
R(x)| [ l2C(1+l−1 |rl(x)|). (3.6)

Note that for some constant 0 < C(J, b) we have f0(r) < 0 for
|r| < C(J, b) (concave part) and f0(r) > 0 for |r| > C(J, b). (Convex part)

We briefly comment on the appearance of Sl, rl instead of the limit
surface S0. First we remark that we could use the first order correction S1,
but not S0. The reason is that ||m̄(l−1r0(x)) − m̄(l−1rl(x))||.=O(1), which
would spoil the estimates. The surface S1 (which we could take instead
of Sl) is a shift of order l in the normal direction of the surface S0, which
is in the tangential direction CK, K large enough by construction. So all
estimates involving derivatives of the surface like curvature etc. are uniform
in l. For this reason we will drop the dependence on l of the distance,
velocity and other geometric quantities in the rest of the proof, moreover
we write r(x) instead of rl(x) for the distance from the zero level set.

3.2. Spectral Analysis

The main result of this subsection is

Lemma 3.2. Spectral estimate: There is a constant C > 0 not
depending on l such that

inf
||Y(x)||L2(dnx)=1

Ql(Y) \ −Cl2
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for l < l0, where l0 depends only on the approximate solution and on a
priori known constants.

We call it spectral estimate, as it is a bound on the spectrum of the
symmetric linear operator which is associated with the quadratic form
Q(Y). Of course this is an estimate for Y only, but the coupling is weak,
and the v-equation linear and parabolic (regularizing). So the Y-estimate
turns out to be the crucial step.

The structure of the proof is as follows: First we provide a very rough
estimate, which tells something about the structure of the radial average
of Y2. It can be improved, but the improvements do not seem to simplify
anything later.

Then we will compute a formal asymptotic expansion of the ‘‘order l2 ’’
eigenfunction. This together with a ‘‘Perron–Frobenius’’ trick will give the
lemma. It is crucial that the highest order part of the unscaled one-
dimensional version of Ql has a minimum zero which is attained by a
strictly positive function, m̄Œ, and that in one dimension there is a ‘‘spectral
gap’’ independent of l.

The part >> Jl(x − y)(Y(x) − Y(y))2 dx dy will be called the interaction
part, > flY2 dx the local part.

In a d-neighborhood of a smooth interface we can use coordinates
f=PrS(x) and r=dist(x, S). Let Sr :={x ¥ Rn | dist(x, S)=r} for |r| < d.
For any Y ¥ L2 and any |r| < d, x ¥ Ud(S), define

Ȳ(r) :==F
S(r)

Y2(x) Hn − 1|Sr
(dx), Ĵl(x, r) :=F

Sr

Jl(x, y) Hn − 1|Sr
(dy).

Lemma 3.3. There is a C independent of l s. t.

|Ĵl(x, r) − J̄l(r(x) − r)| [ l[Cl−11|r(x) − r| < lC]

on Ud(S) × Ud(S). (The expression in brackets is a scaled 1-d kernel)

Sketch of the proof: We write the parallel surface Sr as a graph of the
function f over the tangent plane Tpr

in a point pr ¥ Sr such that x − pr is
normal to Sr and S. Expand by Taylor’s formula f to the second and Nf
to the first order around pr. Then the estimate follows from the Lipschitz-
continuity and rotation invariance of J.

Lemma 3.4. Take l ° 1. Assume that ||Y||2=1, Ql(Y) [ Cl
1
2. Let

Yd :=Y1r [ d. Then ||(Yd) + ||2
L2(R) [ l

1
2 . f + denotes the part of f ¥ L2(R)

orthogonal to m̄Œ in L2(m), see Appendix.

(Y as in the lemma exist, e.g., l−1
2 m̄Œ(r(x) l−1).)
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Proof. First we introduce a symmetric cut-off function tl : R Q [0, 1]
s.t. |tŒ(r)| [ C(d) and t(r)=1 for |r| [ d/2, t(x)=0 for |r| \ 3

4 d.
Now take a function Ỹ as in the statement of the lemma. As the local

part of the functional is convex for |dist(x, S)| ¥ [d/2, .), we get from the
assumption on the derivative of t and standard convolution estimates

Ql(Ỹ)+l(||tŒ||.) ||Y1supp(Jl f t) ||
2
2 \ Ql(tỸ), so

Ql(Ỹ) \ Ql(tỸ) − Cl ||Ỹ||2
2. (3.7)

To simplify notation, we will from now on write Y :=Ỹt.
Both the highest order of the local part of Ql and the L2-Norm are

unchanged under the rearrangement Y Q Ȳ. Now we consider the nonlocal
part of Ql(Y). By the coarea formula

1
2 FF

R
n × R

n
Jl(x − y)(Y(x) − Y(y))2 dx dy=F Ȳ2(r) dr

− FFFF [`Jl(x − y) Y(x)][`Jl(y − x) Y(y)] Hn − 1
Sr

×Hn − 1
SrŒ

(dx, dy) dr drŒ.
z

Il[Y](r, rŒ)

We wish to replace the interaction part by a 1-d expression depending only
on Ȳ and J̄l. Apply the Cauchy-Schwarz inequality to Il[Y](r, rŒ) and
integrate over S to get

Il[Y](r, rŒ) [ =F Ĵl(x, rŒ) Y2(x) Hn − 1
Sr

(dx) =F Ĵl(x, r) Y2(x) Hn − 1
SrŒ

(dx).

Replace Ĵ(x, r) by J̄(r, rŒ) with Lemma 3.3, using the Hölder-continuity of
the square root. Note that J̄(r, rŒ) is symmetric in its variables. We get

Il[Y](r, rŒ) [ J̄l(r − rŒ) Ȳ(r) Ȳ(rŒ)+Cl−1
2 1|r − rŒ| [ l(r, rŒ) Ȳ(r) Ȳ(rŒ),

so finally by convolution estimates

Ql(Y) \ Q̄l(Ȳ) − l
1
2C ||Y||2

2,

where Q̄ is the 1-d functional on L2(R) with convolution kernel J̄, as
studied for example in ref. 19. The unscaled 1-d functional has zero as
minimum, attained by m̄Œ(r), and is bounded away from zero on functions
f ¥ L2(R), ||f||2=1, which are orthogonal to m̄Œ. (Spectral gap.) So we
get Ql(Ỹ)+l

1
2 ||Y||2

2 \ Ql(Y) \ c ||Ȳ +||2
2 − Cl

1
2 ||Y||2

2, which implies ||Ȳ + ||2
2

[ Cl
1
2 . (Remember Ql(Ỹ) [ l

1
2 .) L
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Lemma 3.5 (Approximate Eigenfunction). Let f0 and f1 be the
zeroth and first order of the local part as in (3.4) and (3.5), and let

Ll(Y)(x) :=(Jl f Y)(x) −35f0
1 r(x)

l
2+16+lf1

1PrS(x),
r(x)

l
24 Y(x).

Then there is a smooth function P(s, r): S × R Q R such that

F(x) :=m̄Œ(l−1r(x))+lP(PrS(x), l−1r(x))

solves on {|dist(x, S)| < d/2}

Ll(F)(x)=l2H(x),

where |H(x)| [ C(1+|l−1r(x)|) m̄Œ(l−1r(x)), and |P(s, r)|+|PŒ(s, r)| [

C(1+|r|) m̄Œ(r).

Remark 3.6. By computing one more step of the expansion, we
could construct a function e2

l :=m̄Œ+lP+l2P2, which is a formal eigen-
function, i.e., Ll(e2

l)=cl2e2
l+O(l3).

Proof. We put the ansatz in the equation, expand the convolution as
in Section 2 to replace it by a one-dimensional convolution plus error terms
and find by straightforward but lengthy computations that P must satisfy

F
R

J̄(r − rŒ) P(s, rŒ) drŒ −
P(s, r)

b(1 − m̄2(r)2)
=−R(o(s), r) − m̄Œ(r) A(r),

A(r) :=
2m̄(r)[m0(s, r)+1

2 V(s) m̄Œ(r)]
b(1 − m̄2(r)2)2 ,

R(o(s), r) :=F J̄tan(|r − rŒ|) m̄œ(rŒ) o(s) |y|2 drŒLn − 1(dy),

J̄tan(r − rŒ) :=F J( `|r − rŒ|2+|y|2 ) |y|2 Ln − 1(dy),

(3.8)

where s is treated as parameter, and the tan in J̄tan stands for ‘‘tangential
average.’’ We denote by o(s) the mean curvature in the point s ¥ S, V(s)
the normal velocity and let y=(y1,..., yn − 1) ¥ Rn − 1.

The ideas is as always that P cancels the error from inserting the first
order part in the equation. Due to the decay properties of P, the residual H
is actually of the required form.
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P exists according to Section 4.1 because the right-hand side of (3.8) is
bounded by Cm̄Œ(r) for some C independent of l and is orthogonal to m̄Œ.
The boundedness follows from basic properties of the instanton and its
derivatives, (see ref. 7, (2.8))): |m̄œ(r)(m̄Œ(r))−1| [ C, |m̄œŒ(r)(m̄Œ(r))−1| [ C.

In order to show that the right hand side of (3.8) is orthogonal to m̄Œ,
we use symmetry arguments: m̄Œ is symmetric. From the symmetry of the
kernel, the symmetry properties of the instanton and its derivatives and the
equation defining m0 near the interface we derive that the right hand side is
antisymmetric and thus orthogonal to m̄Œ. L

Now we are able to give a proof for Lemma 3.2:

Proof. Let h0(r) :=(b(1 − m̄2(r)))−1=f0(r)+1 and let f1(x, r) be as
before.

We need to introduce a cut-off which is 0 where l |P| > m̄Œ, and which
is close to 1 in the region where f0=h0 − 1 < 0. Unfortunately we cannot
take just any cut-off. We need a cut-off z for which |z −

l | [ Cl−1(1 − z2). So
we choose a cut-off zl in the following way:

zl(r)=˛ tanh 1K |log(l)| − a
|r|
l
2 on a |r| [ Kl(|log(l)| − 1),

0 on a |r| \ Kl(|log(l)|),

and zl(r(x)) is smooth on Rn. (The function defined above can easily be
extended to a smooth function with |z −

l(r)| [ al−1.) The constants c1, a, K
will be determined later.

We write Q(Y)=l − I=> (h0+lf1) Y2 − >> Jl(x − y) Y(x) Y(y) dx dy
and split the interaction part in two: I=I1+I2,

I1=FF Jl(x − y) Y(x) zl(x) Y(y) zl(y) dx dy

I2=FF Jl(x − y)(1 − zl(x) zl(y)) Y(x) Y(y) dx dy.

We split the local part l with the cut-off:

l1=F
R

n
[(zlY)2 h0+lf1(zlY)2], l2=F

R
n

(1 − z2
l)(h0Y2+lf1Y2).

Hence Q(Y)=l1+l2 − (I1+I2). First consider Q1=l1 − I1. For I1

FF Jl(x − y)(Yzl)(x)(Yzl)(y) dx dy=FF Jl(x − y)(FS)(x)(FS)(y) dx dy.
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S(x)=Y(x) zl(x)(F(x))−1, which is well defined, because F > 0 on
supp(zl). Now use −ab=1

2 (a − b)2 − 1
2 (a2+b2) with ab=S(x) S(y) and

the symmetry of J to derive

− FF Jl(x − y) Y(x) zl(x) Y(y) zl(y) dx dy=−K1+K2,

K1 :=FF Jl(x − y) F(x)(F(y) S2(y)) dx dy,

K2 :=1
2 FF Jl(x − y) F(x) F(y)(S(x) − S(y))2 dx dy.

K2 \ 0 on supp(z). Note that S(x)=0 if zl(x)=0.
In K1 we integrate over x and replace J f F by Lemma 3.5, such that

the result is l1 up to a small error. We get

− K1= − F
R

n
(h0(l−1r(x))+lf1(x, l−1r(x))) F(x) S2(x) F(x) dx+l2H̄

= − l1+l2H̄, |H̄| [ F C(1+l−1 |r(x)|)(zl(x) Y(x))2.

For the last estimate we used that Nxm0 is uniformly bounded in Ud(S) by
construction. Thus Q(Y) \ l2 − I2 − l2 |H̄|.

We estimate −I2 after some algebraic manipulations as

− I2 \ +1
2 FF (1 − zl(x) zl(y))(Y(x) − Y(y))2 − F (1 − zl(x)2) Y(x)2

− FF Jl(x − y) 5|x − y| F
1

0
|Nzl((1 − s) x+y)| ds6 zl(x) Y2(x)

\ − F (1 − zl(x)2) Y(x)2 − C F a(1 − z2
l(x)) zl(x) Y2(x),

where we used that zl is a hyperbolic tangent, i.e., z −

l=al−1(1 − z2
l).

Making use of the exponential decay of the cut-off, we derive

l2 − I2 − l2 |H̄| \ F (h0 − 1 − l ||f1 ||. − Ca)(1 − zl(x)2) Y(x)2 − l2 |H̄|.
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There are a0 and C̃g independent of l < l0, such that

f0(r)=h0(r) − 1=
1 − b(1 − m̄(r)2)

b(1 − m̄(r)2)
> Ca+l ||f1 ||.

for |r| > C̃g, a < a0, so (h0 − 1 − l ||f1 || − Ca) \ 0 for |r(x)| > lC̃g.
As the hyperbolic tangent converges exponentially fast to ±1, we

can choose K such that 1 − z2
l(r) [ l2 on |r(x)| < lC̃g, so we have l2 − I2 \

− Cl2 ||Y1|r(x)| [ lC̃g ||2
2 − l2 |H̄|, and we need only an estimate for |H̄|. We use

Lemma 3.4 for a bound not depending on l.

|H̄| [ F
Cg

l [ r(x) [ l |log(l)|
C(1+l−1 |r(x)|) Y(x)2 dx

=F
l |log(l)|

Cg
l

C 11+
|r|
l
2 Ȳ(x)2 dr

[ F
l |log(l)|

Cg
l

C 11+
|r|
l
2 5l−1m̄Œ 1 r

l
22

+(Ȳ(x) + )26 dr

[ C+C |log(l)| l
1
2 [ Ĉ. L

3.3. The Gronwall Estimate

Let m, u be the solutions of (1.1), (1.2), and ua, ma the approximate
solutions from Section 2. We define

Y(t, x) :=m − ma(t, x), v :=u − ua, w(t, x) :=F
t

0
(u(s, x) − ua(s, x)) ds.

(See also ref. 10). We assume that ||Y(0)||L.+||w(0)||L. [ Clp, p > n+6,
and that (1.1) is solved by ma up to a right hand side rl

a with ||rl
a ||2

2 [ lp,
and that the energy equation is solved exactly by (ma, ua). Let Tg :=
min(Tmax − d, inf{t: ||Y(t)||L2 > l

n+4
2 }, inf{t: ||u||L. \ ||ua ||L.+1}).

Y and w are smooth in space and time on [0, Tg) and |Y| [ 2.
As in Section 3.1, we write a−1 dx for the measure a−1(t, x) dx, where

a(t, x) is as in (3.1). Let || · ||a denote the L2 norm with respect to
a−1(t, x) dx. Then we get from (3.2) and (3.3) and taking into account the
linearization error on [0, Tg]:

1
2 “t ||Y||2

a= − l−2Ql(Y)+F {l−1(“tw) Y+l−2R(x, t, Y, l“tw) Y} dx (3.9)

“tw=Dw − Y. (3.10)

1108 Dirr



As the hyperbolic tangent has bounded second derivative, we know

|R(x, t, J*Y, l“tw)| [ C[(J f Y)2+rl
a+l2(“tw)2].

Further (“tw)2 |Y| [ 2(“tw)2. Put Nl(Y) :=Cl−2[> (Jl f Y)2 |Y| dx+Crl
a].

Now substitute the second equation into the first and use the spectral
estimate for Ql, Lemma 3.2, which gives

1
2 “t ||Y||2

a [ C F {Y2+l−1(Dw − Y) Y+c(Dw − Y)2} dx+Nl(Y).

In order to get rid of the term DwY, multiply (3.10) by −l−1 Dw, then
integrate by parts in space on the left hand side (w is a difference and thus
has zero boundary conditions), exchange time and space derivative (u and
uA are regular locally in time,) and use the result to get (see also ref. 10):

1
2

“t ||Y||2
a+

1
2l

“t F |Nw|2 [ C ||Y||2
2+F l−1(−(Dw)2+2DwY − Y2) dx

+C F (Dw − Y)2 dx+CNl(Y).

So for l < l0(c, C):

1
2 “t ||Y||2

a+Cl−1 1“t F |Nw|2+||v||2
L2(W)

2 [ C ||Y||2
2+Nl(Y).

Integrate over time and use the equivalence of L2(a−1 dx) and L2(dx):

||Y(t)||2
2+Cl−1(||Nw(t)||2

2+||v||2
L2([0, Tg] × W))

[ Clp − 2+Cœ F
t

0
||Y(s)||2

2 ds+Cœ F
t

0
F

R
n

l−2(Jl*Y)2 |Y| dx ds.

It remains to treat the term which is formally of third order in Y. As
||Jl f Y||L. [ Cl−n/2 ||Y||L2, we arrive at

F (Jl f Y)2 (x) Y(x) [ (||Jl f Y||L2)(||(Jl f Y) Y||L2)

[ C(l−n/2 ||Y||L2)(||Y||2
L2).
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Hence until Tg, we can apply Gronwall’s inequality and get

(i) ||Y(t)||2
2 [ C(T) lp − 2,

(ii) ||Nw(t)||2
2 [ C(T) lp − 1,

(iii) F
Tg

0
F v2(t, x) dx dt [ C(T) lp − 1.

(3.11)

Now we wish to derive convergence in better norms.
First we get a L.([0, T], L2(W))-bound for v=u − ua. Remember

l2
“tY=−Y+tanh(bJl f ma+blua) − tanh(bJl f m+blu). By testing the

equation fulfilled by v, i.e., (1.2), with v we get

||v(t)||2
2 [ ||v(0)||2

2+F
t

0
F

W

|(“tY) v|.

By Young’s inequality 2 |(“tY) v| [ l−1v2+l(“tY)2. Using the Lipschitz
continuity of the hyperbolic tangent we get

||v(t)||2
2 [ ||v(0)||2

2+Cl−1 ||v||2
L2([0, t] × W)+Cl−3 ||Y||2

L2([0, t] × W) [ Clp − 5. (3.12)

by (3.11)(i) and (iii). We improve the estimate to L.([0, T] × W) by rough
estimates on the heat semigroup with periodic boundary conditions. For
the required estimates on the semigroup we refer e.g., to ref. 27. Because of
our choice of boundary conditions, we have to work with functions of
average 0. We use the estimates already achieved together with the equa-
tion for u (1.2) in the mild sense, i.e., as integral equation. (‘‘Variation of
constants formula’’), then we use the smoothing properties of the semi-
group to get finally

||u(t) − uA(t)||. [ Cl l(p, n) (3.13)

on [0, Tg), where l(p, n) is strictly increasing in p, so in particular
Tg=Tmax − d for p large enough and d arbitrarily small, but fixed.

For the L.-convergence we use the variation of constants formula for
m: Let ha :=Jl f ma+lua, h :=Jl f m+lu, then

Y(t)=e−l
− 2tY(0)+F

t

0
e−l

− 2(t − s)l−2[tanh(bha) − tanh(bh)],

so for p large enough

|Y(t, x)| [ C(T) F
t

0
(l−2(Jl f |Y(s)|)(x)+l−1 |ua(s, x) − u(s, x)|) ds=O(l).
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4. APPENDIX

4.1. Existence and Regularity for Linear Nonlocal Equations

Most of the results in this chapter are contained in or rather easy
corollaries of results from refs. 7, 14, 17, 19, and 21.

Definition 4.1. Denote by m the measure N(1 − m̄(r)2)−1 dr. Let for
f ¥ L. 2 L2(R)

(L (1)
m̄ f )(x)=−f(x)+b(1 − m̄(x)2)(J̄ f f )(x).

Further define Of, gPm :=>R f(x) g(x)[b(1 − m̄2)]−1 dx, and define the
weighted L.-space ||f||d=supx e−d |x| |f(x)|. (See also refs. 17, p. 550.)

There is a spectral gap for L1
m̄ in L2 and moreover if OR, m̄ŒPm=0,

then there is an a > 0 s.t. ||eL(1)
m̄ tR||d < e−at ||R||d.

Lemma 4.2. If OR, m̄ŒPm=0, then the following assertions hold
(Fredholm situation):

(1) There is a unique solution f orthogonal to m̄Œ of L (1)
m̄ f=R.

(2) Regularity: Moreover there is an a > 0 s.t. for any d with
−a < d < a we have the following regularity result: ||f||d [ Cd ||R||d.

(3) If ||m̄Œ(x)−1R(x)||. < ., then |f(x)| [ C(1+|x|) m̄Œ(x).

In particular if the right hand side decays exponentially, then the
solution decays exponentially. This holds also for non-zero boundary
conditions at ±. :

Lemma 4.3. There is a d0 > 0 such that if L (1)
m̄ f=R, OR, m̄ŒPm=0

and

||R(z) − c+1z > 0(z) − c−1z < 0(z)||d < .,

(exponential convergence towards a constant) for d < d0, then

lim
z Q ± .

f(z)=
c ±

b(1 − m2
b) − 1

,

with exponential rate of convergence d.
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